General instructions for Students: Whatever be the notes provided, everything must be copied in the Maths copy and then do the HOMEWORK in the same copy.

MATHS 13. UNDERSTANDING QUADRILATERALS

Properties of parallelogram:

- (i) Opposite sides of a parallelogramare equal.
- (ii) Opposite angles of a parallelogram are equal.
- (iii) Diagonals of a parallelogrambisect each other.
- (iv) Diagonals of a rectangle are equal and bisect each other.
- (v) Diagonals of a rhombus bisect each other at right angles.
- (vi) Diagonals of a square are equal and bisect each other at right angles.

3. Two adjacent sides of a parallelogram are in the ratio 5:7.

If the perimeter of parallelogram is 72 cm, find the length of its sides.

Solution: Let 5x and 7x are two adjacent sides of a \parallel gram.

[Opposite sides of a | gram are equal]

The perimeter of a \parallel gram = 72 cm

$$5x + 7x + 5x + 7x = 72$$

$$\Rightarrow$$
 24x = 72

$$\Rightarrow$$
 $x = 3$

$$AB = 5x = 5 \times 3 = 15 \text{ cm} = CD$$
 Ans

$$BC = 7x = 7 \times 3 = 21 \text{ cm} = AD$$
 Ans.

7 (ii) Find the measures of x and y.

Solution: [Diagonals of a parallelogram bisect each other]

7x

C

5x

В

$$ON = OU \implies x + 3 = 18 \implies x = 18 - 3 = 15 \text{ cm}$$
 Ans.

and
$$OB = OR \implies x + y = 20 \implies 15 + y = 20 \implies y = 20 - 15 = 5$$
 cm Ans.

11. In the adjoining figure, ABC is atriangle. Through A, B and C lines are $_{\mbox{\tiny R}}$

drawn parallel to BC, CA and AB respectively, which forms a Δ PQR.

Show that
$$2(AB + BC + CA) = PQ + QR + RP$$

Solution: Since, AQBC and ABCR are parallelograms

Therefore,
$$AQ = BC$$
 and $AR = BC \implies AQ = AR$

i.e. A is the mid – point of QR

Similarly, B and C are mid - points of PQ and RP respectively

$$\therefore$$
 AB = $\frac{1}{2}$ RP, BC = $\frac{1}{2}$ QR and AC = $\frac{1}{2}$ PQ

Now,
$$AB + BC + AC = \frac{1}{2} (PQ + QR + RP)$$

$$\Rightarrow$$
 2(AB + BC + CA) = PQ + QR + RP Proved.

QUESTION NUMBERS: 1, 2(ii), (iii), (iv); 4, 7(i), 9 and 10

5. In the adjoining figure, ABCD is a rhombus, find the values of x, y and z.

Solution: [Diagonals of a rhombus bisect each other at right angles]

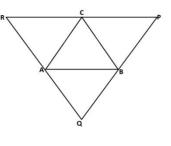
$$0A = 0C \implies x = 8$$
 Ans.

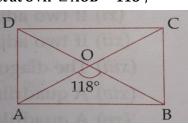
and
$$OB = OD \implies y = 6$$
 Ans.

Now,
$$z^2 = x^2 + y^2$$

$$\Rightarrow z^2 = 8^2 + 6^2 = 64 + 36 = 100$$

$$\Rightarrow$$
 z = $\sqrt{100}$ = 10 Ans.


find (i)
$$\angle ABO$$
 (ii) $\angle ADO$ (ii) $\angle OCB$


Solution: Diagonals of a rectangle are equal and bisect each other

i. e,
$$AC = BD \implies \frac{AC}{2} = \frac{BD}{2}$$

$$\Rightarrow$$
 OA = OB

 $\therefore \angle OAB = \angle ABO$ [Angles opp. to equal sides are equal]


```
In \triangle AOB, \angle OAB + \angle ABO + \angle AOB = 180^{\circ} [Angle sum prop. of a triangle]

⇒ \angle ABO + \angle ABO + 118^{\circ} = 180^{\circ} [\angle AOB = 118^{\circ}]

⇒ 2 \angle ABO = 180^{\circ} - 118^{\circ} = 62^{\circ}

⇒ \angle ABO = 31^{\circ} Ans.

In \triangle ABD, \angle ADB + \angle ABD + \angle BAD = 180^{\circ} [Angle sum prop. of a triangle]

⇒ \angle ADB + 31^{\circ} + 90^{\circ} = 180^{\circ} [\angle ABD = \angle ABO = 31^{\circ}]

⇒ \angle ADB = 180^{\circ} - 121^{\circ} = 59^{\circ} = \angle ADO Ans.

In \triangle ABC, \angle ACB + \angle ABC + \angle BAC = 180^{\circ} [Angle sum prop. of a triangle]

⇒ \angle ACB + 90^{\circ} + 31^{\circ} = 180^{\circ} [\angle BAC = \angle OAB = 31^{\circ}]

⇒ \angle ACB = 180^{\circ} - 121^{\circ} = 59^{\circ} = \angle OCB Ans.
```

HOMEWORK EXERCISE – 13.3

QUESTION NUMBERS: 1, 2, 3 and 9
